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N Gas Turbine Fuel Injectors
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N Rocket Thrust Chamber

“ ',.«’

ORIFICE ORIFICE ORIFILE ORIFICE
INLETE. QUTLETS TOLERRKFRS ELERENT ORIFICE BIA, ELEHENT
TYPES RATIO AMD SIZE  ORIENTATION
= < ELEHENT ELEHENT STABILITY
> SELECTION ARRANGEMENT ANALYS IS

IHPINGERENT ELEHENT
DISTANCE DISTRISUTIOH

IHP INGEMENT

RING GROOVES
ANGLE

DOWMCOMERS

DONE
WAN | FOLD i e "
FLOW SYSTEM

RING HAN|FOLDS

RADIAL AHD
TRANSVERSE
PASSAGES

CONBUST 10N
atagiILaTY

GENERAL FLOW
SYSTEM UPSTREAN)
OF THE ORIFICES)

INJECTOR

COHBUST | QW
FLOW SYSTEM
GEOMETRY PERFORMANCE

Rocket Engine Thrust Chamber [ |

B. Chehroudi, PhD



Liguid Rocket Injectors

Element . Engine
Type Configuration Advantages Uisadvantages Application
« Proven dependability « Subject to blowapart with « EM azcent endine
Unlike ®* | «Good overall mixing hypergolic propellants «[Dealta launch wehicle
Coublet - Simple to manifold « Wall compatibility
: - - problems due to mixture-
(1on1) Extensive studied ratio aradients
« Good overall mixing « Subject to blowapart with « Agena upper =tage,
Unlike *e | .Resultant spray direction is | hypergolic Gemini
Triplet aial «Wall compatibility is good
(2 on 1) +Proven dependability only when fuel is used in
outer orifices
Unilike . « Can be used near wall « Subject 1o blowapart with « Titan [l first,
b ®® | .Resultant spray direction iz | hypergolic propellants second stage
Quadlet g | xa ~Difficult to manifold -Titan Il, second
(2 on 2) v | »Proven dependability « Mot well characterized stage
Like o | *Easy to manifold «Requires increased axial «Titan LIl first stage
¢ | «Good mixing, Very stable distance 1o mix «Jupiter, Thor, Atlas
Doublet s | «MNot subject to blowapart - Sensitive to design «H-1, F-1 engines
(1on1) * | «Well understood tolerances
«Very good wall compatibility | « Poor mixing «Russia use
Concentric gl;l «Low pressure drop «Difficult to fabricate extensively
Tube Fus! :I « Tends 1o become unstable

when throttled
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Water flow test of pintle injector for Air Force
250,000 Ibf Engine
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Water flow test of F-1 engine injector system

Lk " Q i «Eazy to manifold Requires increased axial | «Titan |1l firgt stage .ié?;:oxi_{?_'.zer
IKE o ; ; . orifice
R, © |+Good mixing, Very stable | distance 1o mix +Jupiter, Thor, Atlas .- i combustion
b m § 7 - 4
Doublet A oMot subject o blowapart | *Sensitive to design «H-1, F-1 enaines Y ¥ Yl
(Tont) {I v | +Well understood tolerances Orifice ’ X
adjusting Injector

sleeve face

Variable injection area
concentric tube injector
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Rocket Equations - |
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Rocket Thrust Equation F = m ve + (p o pr;}) A o

Do where p = pressure, Y=velocity, A =area, m = mass flow rate , F = thrust
e

Equivalent Velocity: Veq= Ve +(Pe — Py) A. F = mveq
Define: mn
Total Impulse; | = F At =S F dt =S m Veq dt =m veq

Define:

. Total Impulse I Ve
. —_— — — its =
Specific Impulse: Weight Isp Mo, _Clgﬂ units = sec
F
Isp = —
M Jo
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§/ Rocket Equations - II

F = (mdot) V,, + F=(mdot)g I,

lsp = Veq /0

— %
\Isp:C*Cf/g 4 _\/€<1 c* G
Define C-Star: C = (Pch Athroat) / (Mmdot)

Define Thrust Coefficient: Ci =F/ (P, Athroat) —>

® C.shows contribution of the divergent part of the nozzle to the total thrust (1.6 to 2)

® c* evaluates the combustion efficiency of the thrust chamber: A function of propellant
characteristics and combustion chamber design. It is independent of nozzle characteristics. It is
used as a figure of merit in comparing propellant characteristics and combustion chamber
design.

® c* -efficiency is the ratio of actual valve of c*, as determined from the measurements, and the
theoretical value, and typically has a value 92 to 99.5%. It is used to express the degree of
completion of the energy release and the creation of the high temperature, high pressure gas in

the chamber .
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Overall characteristics

Rockets, Turbojets, and Ramjets

Feature Rocket Turbojet ramjet
Thrust-to-Weight, typical 75:1 5:1, turbojet and | 7:1 at Mach 3 at 30,000 ft
afterburner
Specific fuel consumption | 8-14 0.5-1.5 2.3-3.5

(Ib/h)/(Ibof thrust)

Specific thrust (Ib § 5000 to 25,000 2500 (Low Mach at sea | 2700 (Mach 2 at seas
thrust)/(ft2 frontal area) level) level)

Thrust change with | Slight increase Decreases Decreases

altitude

Thrust vs. flight speed

Nearly constant

Increases with Speed

Increases with speed

Thrust vs. air temperature | Constant Decreases with | Decreases with
temperature temperature

Flight speed vs. exhaust | Unrelated, flight speed | Flight speed always less | Flight speed always less
velocity can be greater than exhaust velocity than exhaust velocity
Altitude limitation None; suited to space | 14,000- 17,000 m 20,000 m at Mach 3

travel 30,000 m at Mach 5

45,000 m at Mach 12

Specific impulse typical | 270 sec 1600 sec 1400 sec

(Ibf per unit propellant or
fuel weight flow per sec)
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ROCKET vs. TURBINE ENGINES

TURBINE ENGINES

ROCKE ENGINES

Internal operating pressure ~ 300
psi

Internal
6000 psi

operating pressures -~

Turbine temperature ~ 3300F

Turbine temperatures ~ 1250 F

T/IW ~6 AT T ~ 40,000 Ibf

T/W ~ 65 AT T ~450,000 |bf

Room Temperature propellant

Cryogenic propellants (-280F to -
423F)

Mission time at max thrust ~25%

Mission time at max thrust ~ 95%

Idle to max thrust time <~ 5s

Idle to max thrust ~ 1s
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Performance of Different Types of
Engines
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Feed System: Pressure-Fed vs.
Turbopump
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* Liquid propellant rocket engine .
with gas pressure feed system.

Liquid propellant rocket engine
with a turbopump feed system.
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Feed System: Pressure-Fed vs.

Turbopump

Liquid propeHant
feed systems
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N Space Shuttle Main Engine (SSME)
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\/ Special Features of SSME Engine
.‘

Rocketdyne’s Space Shuttle Main Engine (SSME) operates at greater temperature extremes than
any mechanical systems in common use today. The fuel, liquid hydrogen, is -423 degrees F, the
second coldest liquid on earth, and when gurned with liquid oxygen, the temperature in the
engine’s combustion chamber reaches +6000 degrees F — That’s higher than the boiling point of
iron

The maximum equivalent horsepower developed by the three SSMEs is just over 37 million HP.
The energy released by three Rocketdyne’'s SSMEs is equivalent to the output of 23 Hoover Dams

Although not much larger than an automobile engine, the SSME high-pressure fuel turbopump
generates 100 HP for each pound of its weight, while an automobile engine generates about one-
half HP for each pound of its weight

Even though Rpcketdyne’'s SSME weighs one-seventh as mush as alocomotive
engine, its high-pressure fuel pump alone delivers as much horsepower as 28
locomotives, while its high pressure oxidizer punp delivers the equivalent
horsepower for 11 more

incredible facts

If water, instead of fuel, were pumped by the three Rocketdyne SSMEs, an
average family-size swimming pool could be drained in 25 seconds

The SSME high-power fuel turbopump main shaft rotates at 37,000 rpm
compared to about 3,000 rpm for an automobile engine operating at 60 mph.

Discharge pressure of an SSME high-pressure fuel turbopump could send a
column of liquid hydrogen 36 miles in the air.
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* Liquid Rocket Engines (LRE)
can use a wider range of

oX | d | ZErs Oxygen Blanghing Damage to SSME
.. A | Combustion Chamber Walls
— Not limited to oxygen M i :

* LRE’s burn hotter
Combustion temperatures

(K) Air 02
H2 2376 3078
CH4 2224 3053 /.Iﬁs%i%z';”
— Derivative consequence: L
h ars h er m aterlal S CHAMBER/NOZZLE

environment

* Oxygen blanching (wall
corrosion due to hot

oxygen)
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Combustion Instability
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J Combustion Instability:
Nature of the Problem
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Combustion Instability:
Nature of the Problem
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obtained ~25 ms from bomb pulse

destructive liquid rocket resonant combustion mode leads to the consideration of a rotating detonation-like
wave concept to explain the phenomenon

® The observed pressure ratio across the wave front varies from in excess of 20:1 near the injector to 4:1 near the
nozzle entrance. The nonsymmetrical wave exhibits a shock-like transient at certain chamber locations
22
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Coupling between oscillations in the chamber and unsteady motions
within the injection elements (Injection coupling)

Periodic pulsed combustion of excess liquid propellant accumulations
on boundary surfaces accompanying film cooling (Resurging: frequently
observed following explosion of a bomb for rating dynamic stability. It is
cause by the pulsed combustion of liquid fuel detached from the liquid
layer produced with the film cooling)

Transverse displacements of the injected fuel and oxidizer jets when
exposed to oscillations of velocity parallel to the injector face (critical
nearest the injector where processes forming liquid drops are most
important)

If the fuel and oxidizer are not uniformly mixed due to injector design
and near-injector processes, interactions with oscillations in the flow can
cause fluctuations of the mixture ratio and, therefore, of the burning rate

Processes within the combustion zone or factors affecting the location
of the combustion within the chamber

Transient fluctuations can be amplified by the large fluctuations of
thermodynamic properties (such as pressure fluctuations, brining
iInstantaneous pressure near the critical pressure)

Oefelein and Yang (1993). Comprehensive review of liquid propellant combustion instabilities in F-1 Engines. Journal of Propulsion and Power,
Vol. 9, No. 5, Sept.-Oct. B. Chehroudi, PhD
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\ Possible Mechanisms (F-1 Englne)
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A P A Living List of Research Areas for
\/ Fundamental Understanding of Combustion

\ ./

Q. Instabilities

Flame acoustic wave interaction

Flame shock wave interaction

Injector stream — acoustic wave interaction (both transverse and longitudinal)
Heat release before and during the acoustic instability

Impact of characteristic combustion time on instability
Effects of mean drop size, size distribution, and atomization periodicity/unsteadiness on instability
Is vaporization the rate-controlling mechanism under supercritical condition?

1
2
3
4,
5. The nature of flame stabilization and impact of instability on stabilization
6
7
8
9 Nature of interaction between adjacent injector flames

10. Near-wall heat transfer augmentation as a result of transverse flow oscillation

11. Heat transfer from acoustically resonating flames

12. Interaction of acoustic field/waves with vortex shedding

13. Mechanism of energy transfer from chemical reaction in the flame zone to acoustic motion/field

14. Role of equivalence ratio fluctuations as a possible mechanism for driving combustion instability
15. Investigation of detailed flame dynamics at scales sufficient to resolve the energy transfer processes
16. Impact of swirling flow on combustion instabilities

17. Fundamental understanding of flame/flow interaction

18. Acoustic wave — shear layer interaction (vortex shedding)
19. Acoustic waves — jet core interaction

20. Flame flashback issues as it pertains to instabilities

21. Role of vorticity in the shear layer and its interaction (resonance) with acoustic field in a chamber

22. Linear and nonlinear interaction of sound and flame

23. The impact of fuel properties on combustion instabilities

24. Flame impingement with solid boundaries (rapid destruction of flame area leading to intense sound radiation)
25. Flame-flame collision (Rapid destruction of flame area leading to intense sound radiation)

26. ..

27. Effects of supercritical condition on relevant items listed. The nature of stability under supercritical condition

28. Wave steepening and unsteady detonation wave phenomena
29.  Shock/injector interaction

30. Surface effects including heat transfer computations

31. Modeling of the bombing tests in computational terms

B. Chehroudi, PhD
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